
Automated Semi-supervised Authorship
Attribution of Android Binaries

Hugo Gonzalez, Natalia Stakhanova, Ali A. Ghorbani
Faculty of Computer Science, University of New Brunswick

 Malware on the Android platform has
increased exponentially. Growing
more than 600% in the last two
years.

 New threats appear each day in the
form of botnet, ransomware, adware
or even worse: all together

 Typical methods to perform malware
analysis focus on binaries it self,
creating signatures or behavioral
profiles.

The Problem

Contributions
 Android Authors Dataset
 Method to classify and cluster on

top of Random Forest algorithm
 Approach to create label profiles
 Large scale evaluation

Benchmark profiles

Proposed solution

 It is our believe that only a reduced
set of skilled authors produce
primary strands of the malware,
meanwhile the available samples
are repackaged, reused, recompiled
or evolved versions from the main
strand.

 Our proposed approach looks for
similarities in Android binary code
from authors perspective.

 It involves 3 step process:
● Creation and evaluation of
benchmark profiles

● Creation and evaluation of
incremental profiles

● Emergent behavior layer, where a
large number of apps are analyzed.

Feature Extraction

+

Authors Dataset

33 authors.
1,428 apk files,
from 8 markets

Supervised
learning

Random Forest

** Array is a data structure used in Android programming that is used
in almost all apps. Main objective of array structures is to efficiently
store similar data. Different from other structures, compilation process
produce minimal effects in resulting binary code.

Accuracy F-score Precision

Recall

3-gram results

Emergent behavior layer

Feature Extraction

Values extracted
from apps

(classes, metods …)

+

Array related opcodes

Datasets

Semi -Supervised
learning

Random Forest

3gram, 32 768 features,
10 files per groups and

8 bins.

We choose 3gram with
32 768 features
based on time and
performance.
** We perform a 10 fold
cross validation

Incremental profiles
Feature Extraction

+

Authors Dataset

33 authors.
1,428 apk files,

from eight markets

Supervised
learning

Random Forest
3gram, 32 768 features

Leave out 20% of authors
Create new labels for

unseen authors

Minibatch_Classify_and_cluster :

input -> list_of_apps.
output -> results_map-list, nofinding_map-list, groups_map-list

binvalues = 80, 70, 60, 50, 40, 30, 20 ,10
for binval in binvalues:
 clear map-list[binval]

clear results_map-list
clear nofinding_map-list

for app in list_of_app:
 predictions = model.predict_probability(app)
 value, class = get_max(predictions)
 if value > .90 then:
 results_map-list [class] add (app)
 else :

 notfind = True
 for binval in binvalues:

 if value > binval / 100 :
 notfind = False
 map-list[binval][class] add (app)
 break

 if notfind == True:
 nofinding_map-list add (app)

clear groups_map-list

for each binval in binvalues:
 for each class in map-list[binval]:
 if map-list[binval][class] contains more than 20 elements:
 label = CreateNewLabel (map-list[binval][class])
 groups_map-list [label] = map-list[binval][class]
 else :
 for each app in map-list [class]:
 nofinding_map-list add (app)

return results_map-list, nofinding_map-list, groups_map-list

78% of apps previously unseen
where correctly attributed to a new
label profile created during the
process. To reduce the model size
and time, we choose 8 bins and 10
files instead of 5 files.
*We perform a 10 fold cross validation for
these experiments.

Total Unseen apps 33,153

Attributed apps 4,830 14.57%

Correctly attributed
apps *

3,371 69.79% 10.17%

Unattributed apps 28,323 85.43%

Related without label 11,839 35.71%

Non related apps 16,484 49.72%

New created label
profile

1,147

With more than 200
apps

3 Plankton

With more than 100
but less than 200

12 Googleplay

* Apps are considered correctly attributed when they belong
to the same malware family or from the same market..
Further investigation is needed.

Future work

 Evaluate complementary features
 Improve random forest

performance using distributed task
 Use small number of files to create

possible profiles.
 Web service to analyze apps.

STEP
1

STEP
2

STEP
3

	Slide 1

